Saturday, October 11, 2014

data centre using wireless communication

A data center includes a plurality of computing units that communicate with each other using wireless communication, such as high frequency RF wireless communication. The data center may organize the computing units into groups (e.g., racks). In one implementation, each group may form a three-dimensional structure, such as a column having a free-space region for accommodating intra-group communication among computing units. The data center can include a number of features to facilitate communication, including dual-use memory for handling computing and buffering tasks, failsafe routing mechanisms, provisions to address permanent interface and hidden terminal scenarios, etc.

DESCRIPTION
BACKGROUND
Data centers traditionally use a hierarchical organization of computing units to handle computing tasks. In this organization, the data center may include a plurality of racks. Each rack includes a plurality of computing units (such as a plurality of servers for implementing a network-accessible service). Each rack may also include a rack-level switching mechanism for routing data to and from computing units within the rack. One or more higher-level switching mechanisms may couple the racks together. Hence, communication between computing units in a data center may involve sending data “up” and “down” through a hierarchical switching structure. Data centers physically implement these communication paths using hardwired links.
The hierarchical organization of computing units has proven effective for many data center applications. However, it is not without its shortcomings. Among other potential problems, the hierarchical nature of the switching structure can lead to bottlenecks in data flow for certain applications, particularly those applications that involve communication between computing units in different racks.

SUMMARY
A data center is described herein that includes plural computing units that interact with each other via wireless communication. Without limitation, for instance, the data center can implement the wireless communication using high frequency RF signals, optical signals, etc.

In one implementation, the data center can include three or more computing units. Each computing unit may include processing resources, general-purpose memory resources, and switching resources. Further each computing unit may include two or more wireless communication elements for wirelessly communicating with at least one other computing unit. These communication elements implement wireless communication by providing respective directionally-focused beams, e.g., in one implementation, by using high-attenuation signals in the range of 57 GHz-64 GHz.

According to another illustrative aspect, the data center can include at least one group of computing units that forms a structure. For example, the structure may form a column (e.g., a cylinder) having an inner free-space region for accommodating intra-group communication among computing units within the group.
According to another illustrative aspect, the computing units can be placed with respect to each other to avoid permanent interference. Permanent interference exists when a first computing unit can communicate with a second computing unit, but the second computing unit cannot directly communicate with the first computing unit.
According to another illustrative aspect, the computing units form a wireless switching fabric for transmitting payload data from a source computing unit to a destination computing unit via (in some cases) at least one intermediary computing unit. The switching fabric can implement these functions using any type of routing technique or any combination of routing techniques.

According to another illustrative aspect, a computing unit that is involved in transmission of payload data may use at least a portion of its memory resources (if available) as a buffer for temporarily storing the payload data being transmitted. Thus, the memory resources of a computing unit can serve both a traditional role in performing computation and a buffering role.

According to another illustrative aspect, the computing units are configured to communicate with each other using a media access protocol that addresses various hidden terminal scenarios.
The data center may offer various advantages in different environments. According to one advantage, the data center more readily and flexibly accommodates communication among computing units (compared to a fixed hierarchical approach). The data center can therefore offer improved throughput for many applications. According to another advantage, the data center can reduce the amount of hardwired links and specialized routing infrastructure. This feature may lower the cost of the data center, as well as simplify installation, reconfiguration, and maintenance of the data center. According to another advantage, the computing units use a relatively low amount of power in performing wireless communication. This reduces the cost of running the data center.
The above approach can be manifested in various types of systems, components, methods, computer readable media, data centers, articles of manufacture, and so on.

This Summary is provided to introduce a non-exhaustive selection of features and attendant benefits in a simplified form; these features are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.

https://www.google.co.in/?gfe_rd=cr&ei=_Vg5VPaxK-HY8gfxn4CwBg&gws_rd=ssl#q=data%20center%20using%20wireless%20communication

No comments:

Post a Comment